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ABSTRACT 

 
MICROBIALLY INDUCED SEDIMENTARY STRUCTURES AS AN ECOLOGICAL NICHE IN 

SUBTIDAL EARLY TRIASSIC ENVIRONMENTS OF EASTERN PANTHALASSA  
 
 
 

by 
 

Erin Wagner 
 
 

The University of Wisconsin-Milwaukee, 2015 
Under the Supervision Dr. Margaret Fraiser, PhD 

  
 

 Early Triassic microbially induced sedimentary structures (MISS) are a critical link 

in understanding the dynamics between changing environmental conditions and their 

effect on marine communities. The Permo-Triassic mass extinction (PTME) resulted in 

vacated ecospace and reduced bioturbation that allowed MISS to expand into Early 

Triassic subtidal environments.  Data from southern Idaho and Montana indicate that 

MISS inhabited and proliferated in subtidal marine environments during the 

Griesbachian.  This propagation led to changes in shallow substrate geochemical 

conditions that directly affected macrofaunal communities.  The proliferation of 

microbial mats would have created anoxic and euxinic porewaters and made vertical 

bioturbation physiologically difficult.  Geochemical data shows the bottom water signals 

associated with MISS were oxic to suboxic, but the porewaters below the microbial mat 

surface could have been anoxic even if the overlying water column was oxygenated.  

However, some metazoans adapted to these low-oxygen, shallow euxinic environments, 

allowing them to expand their ecological range during this period of crisis.   Two 
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metazoans with such adaptations were the lingulid brachiopods, which have the ability 

to oxidize hydrogen sulfide in their blood, and the bivalve Claraia, which was well suited 

to low oxygen environments.  These specific disaster taxa, defined as opportunists that 

occupy vacated ecospaces during recovery periods but are subsequently forced into 

marginal settings when the recovery gains momentum, were found in direct contact 

with these MISS.  These findings indicate that the subtidal proliferation of MISS during 

the Early Triassic provided an ecological niche in which specific metazoans had complex 

and extensive relationships. 
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Chapter 1: Introduction 

Permo-Triassic Mass Extinction: 

During the Permo-Triassic mass extinction (PTME), the largest extinction in 

Earth's history, an estimated 49% of all marine families and 78% of all marine genera 

went extinct (e.g., Raup, 1979; Clapham et al., 2009).  Recent U-Pb zircon dating of ash 

beds within the Global Stratotype Section and Point (GSSP) in Meishan, China has 

constrained the extinction between 251.941 ± 0.037 and 251.880 ± 0.031 Mya (Burgess 

et al., 2014).  This interval of 60 ± 48 ka represents the main extinction event (Burgess et 

al., 2014).   

Multiple causes have been proposed for the PTME.  One of the largest triggers 

was likely the long term eruption of flood basalts from the Siberian Traps (e.g., Shen et 

al., 2012).  It is hypothesized that the bulk of the eruptions occurred during an 

approximately one million year interval prior to 251.7 ± 0.4 Ma (Kamo et al, 2003; Black 

et al. 2012).  40Ar/39Ar isotope ages from the Noril’sk region in the western Siberian 

Basin, the Lower Tunguska area on the Siberian craton, the Taimyr Peninsula, the 

Kuznetsk Basin, and Vorkuta in the Polar Urals of Russia show that volcanic activity in 

Siberia covered up to 5 million km2 (Reichow et al., 2009; Burgess et al., 2014).  Based on 

the basaltic rock record in Siberia, these eruptions likely delivered massive pulses of 

volatiles into the atmosphere including sulfur, chlorine, and fluorine as well as carbon 

dioxide and methane (Retallack, 1999; Retallack & Jahren, 2008; Black et al, 2012). The 

estimated total magmatic degassing from these eruptions are: 6300 to 7800 Gt of sulfur, 

3400 to 8700 Gt of chlorine, and 7100 to 13,600 Gt of fluorine (Black et al., 2012).  The 
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injection of these volatiles into the upper atmosphere would have had effects ranging 

from toxicity, acid rain, temperature changes, ozone depletion and ocean acidification 

(Black et al., 2012). 

While evidence for the duration and extent of the Siberian Trap eruptions in the 

late Permian is fairly well constrained, the environmental and ecological implications are 

not fully understood (Benton & Twitchett, 2003; Algeo et al., 2011; Shen et al., 2012).  

Evidence suggests the likely trigger for the dramatic climate change during the PTME 

was the release of volcanic carbon dioxide and methane (Retallack & Jahren, 2008; 

Algeo et al., 2011). Interconnected to the massive release of greenhouse gases were the 

episodic anoxic, sulfidic, and hypercapnic conditions in platform and continental margin 

settings seen at the peak of the end Permian and into the Early Triassic (Nielsen & Shen, 

2004; Algeo et al., 2011). These conditions were primarily due to enhanced continental 

weathering and the gradual warming of the ocean (Nielsen & Shen, 2004; Algeo et al., 

2011).  Data suggest an ~10°C increase in ocean temperatures that immediately 

predated or postdated the extinction, which indicates an approximately 1°C rise in 

ocean temperature per 6,000 years of the extinction (Sun et al., 2012; Burgess et al., 

2014).  Evidence also indicates a sharp negative spike in the carbon isotope record that 

preceded the extinction event, with instability in the carbon cycle that continued for 

approximately 500ka (e.g., Burgess et al., 2014). 

Increases in vanadium and molybdenum are seen in the rock record directly 

after the extinction event. Trace element concentrations are indicators of reducing 

conditions, with vanadium and molybdenum being particularly useful when determining 
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anoxia as they both preferentially concentrate in sediments of low oxygen (Calvert and 

Pederson 1993; Tribovillard et al., 2006).  The first spike of vanadium does not coincide 

with any other trace element trends, suggesting mildly reducing conditions, and a first 

step reducing of vanadium (Calvert and Pederson, 1993; Kloss, 2012). Another spike 

coincides with a Mo increase, which indicates more strongly reducing conditions and the 

second step reducing of vanadium indicating both anoxic and euxinic conditions 

(Takahashi et al., 2014).  Additionally, decreases in manganese and increases in 

chromium concentrations across the event horizon both indicate further reducing 

conditions (Takahashi et al., 2014).   

Under normal, oxic conditions, 138Ce/142Ce ratios range from 0.2‰ to 0.6‰.  At 

the P-T boundary, levels of 138Ce/142Ce increased to a range of 0.9‰ to 1.1‰, 

suggesting conditions were reducing (Takahashi et al., 2014).  Similarly, Th/U ratios 

increased at the event horizon from 0.06 to 0.42, also indicating increasing anoxia 

across the extinction boundary (Brennecka et al., 2011).  These ratios and 

concentrations can give a more detailed picture of the ocean chemistry changes that 

occurred, and how marine environments were directly affected at the event horizon and 

beyond.  The presence of both significant anoxia and euxinia during the PTME were 

likely kill mechanisms for the extinction event.   
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Early Triassic Aftermath: 

Evidence for Continued Environmental Stresses 

Evidence for marine anoxia, euxinia, and hypercapnia (CO2 poisoning), along with 

major shifts in the stable carbon isotope record is observed in the rock record well into 

the middle of the Triassic (e.g., Luo et al., 2011; Brennecka, 2011; Algeo et al., 2011).  

Continued stresses on Early Triassic biotic recovery were driven by significant changes in 

ocean chemistry as well as toxic atmospheric conditions that drove one another. 

Significant attention has been paid to the negative δ13C excursion that 

corresponds to the Permian-Triassic boundary, but excursions continued throughout the 

Early Triassic until stabilization was reached in the Middle Triassic (Payne et al., 2004; 

Rampino & Caldeira, 2005, Corsetti et al., 2005; Payne and Kump, 2007).  Approximately 

5my of Early Triassic δ13C excursions reached values as high as +8‰ and as low as -3‰ 

in marine carbonates (Payne and Lehrmann, 2004; Payne and Kump, 2007).   

Several causes for these negative excursions have been proposed, including 

instantaneous events like massive releases of methane or carbon dioxide, as well as 

protracted causes such as ocean stratification/turnover and the reorganization of the 

carbon cycle (e.g., Corsetti et al., 2005).  Modeling by Payne and Kump (2007) has 

indicated that the negative δ13C excursions resulted from carbon release with the 

isotopic signature of volcanic CO2, and positive excursions are a result of increased pCO2.  

They conclude that episodic thermal metamorphism of coal and carbonates during the 

eruption of the Siberian Traps is a likely explanation of the excursion fluctuations 



www.manaraa.com

5 

 

throughout the Early Triassic and, once the volcanism subsided, the subsequent 

recovery in the Middle Triassic occurred (Payne and Kump, 2007).  

Figure 1. δ13C record for the Late Permian through the Middle Triassic.  δ13C data from 

stratigraphic sections on the Great Bank of Guizhou in southern China. (Modified from 

Payne and Kump, 2007).  

 

Euxinia during the Early Triassic is widely documented through the size and 

abundance of 34S-depleted pyrite framboids, as well as the sulfur isotopic record of 

marine strata (Shen et al., 2007; Algeo at al., 2010, 2011).  δ34S records from shallow 

marine sections indicate a negative excursion at the extinction horizon (-10 to -20‰) 

and a positive shift (+20 to +40‰) in the approximately first million years of the Early 

Triassic (Fig. 1) (Riccardi et al, 2006; Payne and Kump, 2007; Algeo et al., 2008).  The 

negative excursion at the Permian-Triassic Boundary (PTB) is likely due to an upwelling 
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of water from the deep ocean or a rising of the chemocline towards the surface, causing 

34S-depleted hydrogen sulfide to rise into the ocean surface waters (Kump et al., 2005; 

Algeo et al., 2008). 

Previous studies on the Lower Triassic have suggested that bottom water anoxia 

and euxinia was widespread based on evidence from a limited geographical range of 

Panthalassan abyssal sections (Twitchett and Wignall, 1996; Algeo et al., 2011)   

However, recent geochemical evidence suggests localized anoxia and euxinia in an 

expanded oxygen minimum zone (OMZ), with suboxic conditions on Panthalassan 

bottom waters (Algeo et al., 2008, 2010, 2011).  The abundance of pyrite framboids 

found in Early Triassic deep water sediments can be attributed to their formation higher 

in the water column (OMZ) and subsequent sinking to the seafloor (Algeo et al., 2008, 

2010, 2011).  Episodic upwelling of the OMZ waters would have brought anoxic and H2S 

rich waters onto the shallow continental shelf and platforms (Algeo et al., 2010, 2011).  

Additionally, upwelling of carbon dioxide from the OMZ may have increased the acidity 

of the surface waters, the combination of which could have contributed to the 

protracted recovery during the Early Triassic (Fraiser and Bottjer, 2007, Algeo et al., 

2011).  

Evidence indicates that during the PTME a rapid climate change contributed to 

the extinction event in both marine and terrestrial ecosystems (Joachimski et al., 2012; 

Kiehl and Shields, 2014).  This global climate shift was likely caused by the elevated 

atmospheric CO2 levels following the eruptions of flood basalts from the Siberian Traps 

(Retallack & Jahren, 2008; Algeo et al., 2011) Global warming during the end Permian 
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into the Early Triassic would have resulted in shallow water anoxia due to poor ocean 

circulation and increased respiration of organic carbon (Wignall and Hallam, 1992; Knoll 

et al., 2007; Joachimski et al., 2012). Oxygen and carbon isotope data from in Bed 25 in 

Meishan, South China, and Bed 28a in Shangsi, South China both indicate an onset of 

poor oxygenated facies during the end Permian (Yan et al., 1989; Xie et al., 2007; 

Joachimski et al., 2012).    These factors likely affected the protracted recovery of both 

marine and terrestrial ecosystems following the PTME (Knoll et al., 2007). 

 

Biotic Recovery and Restructuring 

It has been recently proposed that the aftermath from the PTME was protracted 

and lasted approximately 5 million years after the extinction event into the Middle 

Triassic (Lehrmann et al., 2006).  While regional recovery and restructuring varied 

greatly, marine ecosystems generally showed the same trend of a rapid faunal decline 

during the PTME, minimal recovery during the Griesbachian, slightly stronger recovery 

during the Dienerian and Smithian, and a strong recovery during the Spathian (Algeo, 

2011; Fraiser et al., 2013).  However, Hofmann et al. (2011) have suggested that an 

advanced global recovery occurred during the Griesbachian, and post-Griesbachian 

events delayed the complete recovery until the Spathian.   

The definition of recovery as a return to prior dominance and diversity of a 

paleocommunity is not an entirely accurate term for the aftermath of the PTME (Dineen 

et al., 2014).   The Early Triassic marks the faunal change from the brachiopod-rich 

Paleozoic Evolutionary Fauna (EF) to mollusc-rich Modern EF (Gould & Calloway, 1980; 
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Sepkoski, 1981; Algeo et al., 2011; Dineen et al., 2014).  Therefore, the term 

“restructuring” would be more apt, as the preceding fauna of the Paleozoic has been 

largely replaced and the previous taxonomic and ecologic structure no longer exists 

(Dineen et al., 2014).   

Groups that suffered most during the aftermath were anthozoans, brachiopods, 

bryozoans, cephalopods, and crinoids (Schubert & Bottjer, 1995; Algeo et al., 2011).  

During the earliest of the Triassic, a significant reduction in body size, known as the 

“Lilliput Effect”, occurred in the surviving and newly evolving organisms (Twitchett, 

2007; Algeo et al., 2011).  Many of these organisms began to return to pre-extinction 

size during the Early and Middle Triassic when ecological conditions began to improve 

(Algeo et al., 2011).   

The Lower Triassic subtidal rock record shows high volumes of flat-pebble 

conglomerates, wrinkle structures, microbialites, and carbonate sea floor fans (Pruss et 

al., 2005).  Subtidal microbialites and carbonate seafloor fans are an indicator of an 

unusual ocean chemistry due to episodic pulses of anoxic basin waters, and the 

presence of flat-pebble conglomerates and wrinkle structures indicates a long-term 

reduction in vertical bioturbation.  These factors denote reduced levels of infaunal 

bioturbation and unusual ocean chemistry in some regions for possibly five to six million 

years following the PTME (Pruss et al., 2005).   Anoxic bottom and porewaters have a 

strong correlation to an absence of bioturbation or reduction in the depth of 

penetration of sediments (Gringras et al., 2011). 
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During the Early Triassic, select species, considered ‘disaster taxa’, thrived in the 

deleterious environments following the PTME.  The term ‘disaster taxa’ refers to 

generalists that have a large stratigraphic range and are abundant during ecologically 

stressful events, such as mass extinctions (Fischer and Arthur, 1977).  Under actualistic 

environmental conditions, these disaster taxa are generally far less abundant and found 

in more restricted environments (Schubert & Bottjer, 1995).  The most well-known of 

these disaster taxa during the Early Triassic are linguilid brachiopods, the bivalve Claraia, 

and microbially induced sedimentary structures (MISS) (Pruss et al., 2004; Pruss et al., 

2005). 

 

Microbially Induced Sedimentary Structures: 

Description 

 The general term “microbially induced sedimentary structures” (MISS) includes 

17 different types of microbial structures classified by modes of formation including 

variations in growth, baffling and trapping, binding, and biostabilization (Fig. 2) (Noffke 

et al., 2009; Gingras et al., 2002).   
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Figure 2. Image showing the 17 different types of MISS classified by their modes of 

formation. Modified from Noffke, 2009.  

 

While MISS are commonly created from cyanobacteria, they can also be formed 

by or in conjunction with other filamentous microbes such as green algae, prokaryotic 

filamentous sulfur oxidizing bacteria, and other heterotrophic bacteria (Bailey et al., 

2006; Dupraz et al., 2009).  Typically cyanobacteria live near the mat surface along with 

anaerobic heterotrophs (Pierson et al., 1992; Dupraz et al, 2009). The bacteria, or 

various microbial filaments, secrete a sticky, extracellular polymeric substance that 

covers individual sedimentary grains and binds and traps them in a coating known as a 

biofilm (Decho, 1990; Noffke et al., 2001; Schieber et al., 2007). This baffling and 

trapping occurs during deposition of sediment, while the binding of sediment and 

growth occur during periods of no or low sediment influx (Noffke, 2009).   
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When under optimal conditions, biofilms proliferate and form thick organic 

layers termed microbial mats.  The microbial filaments stabilize the substrate in three 

ways: sealing sediment by means of a microbial mat, smoothing the rough sediment 

surface with extracellular mucilages from the microbes, and fixation of loose sediment 

grains to the mat fabrics (Noffke et al., 2001).  Ripple marks are often leveled on a tidal 

surface by microbial mats as they initially grow in the deeper rippled areas and form 

planar beds through time. Biostabilization, defined as microbial sediment fixation, also 

counteracts normal erosional processes (Noffke, 2009; Noffke, 2004).  Under normal, 

actualistic environmental conditions, MISS are restricted to intratidal and deep water 

due to high infaunalization and sedimentation rates (Noffke, 2004).  However, MISS 

dominated marine subtidal environments in some regions during the Early Triassic 

(Pruss et al., 2004; Noffke, 2009; Mata and Bottjer, 2012).   

 

Previous Work on Early Triassic MISS 

While Lower Cambrian MISS and their associated fossils have been extensively 

studied, research on Lower Triassic MISS is underrepresented in the literature.   

Lower Triassic strata in both the western United States and northern Italy produced 

some of the first global MISS in shallow subtidal siliciclastic paleoenvironments since the 

Cambrian (Pruss et al., 2004).  Pruss et al. (2004) examined wrinkle structures in the 

Smithian aged Werfen Formation of northern Italy and the Spathian aged Moenkopi and 

Thaynes Formation in the western United States. The majority of Lower Triassic MISS 
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studied have come from the Dienerian, Smithian, or Spathian time periods. Little 

research exists on Griesbachian MISS which directly followed the PTME.   

 

Scientific Significance: 

MISS as an Ecological Niche Hypothesis 

I hypothesize that MISS provided an ecological niche for some metazoans during 

the deleterious conditions of the Early Triassic.  The two working hypotheses supporting 

my main hypothesis are that MISS proliferated in the subtidal marine realm during the 

Early Triassic, and that shelled invertebrates are found in close association with these 

MISS.  My hypothesis will be tested by finding evidence of disaster taxa such as lingulid 

brachiopods and the bivalve Claraia in proximity to the MISS in the Griesbachian rock 

record. The significant presence of disaster taxa indicates that only select organisms had 

adaptations to survive the harsh porewater environments created by the microbial 

mats, creating an ecological niche in which the mats provided a food source and low 

competition.  Additionally, the Lower Triassic rock record shows evidence for the 

proliferation of microbial mats in subtidal marine settings.  While MISS are generally 

restricted to intratidal and deep water settings due to high infaunalization and 

sedimentation rates, the Early Triassic provided a unique opportunity for their 

proliferation. 
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Contributions of this research 

Studying the recovery/restructuring in the Early Triassic can reveal important 

insight into how biologic and sedimentary systems respond to biotic crisis, specifically in 

regards to reduction of biotic diversity and long-term environmental fluctuations.  While 

Lower Cambrian MISS and their associated fossils have been studied extensively, 

research on Lower Triassic MISS is greatly underrepresented in the literature.  This 

insufficient research of Lower Triassic MISS is an important problem because it inhibits 

our ability to understand the dynamics between changing environmental conditions and 

its effect on marine communities.  

 

Chapter 2: Geologic Setting 

The Griesbachian Dinwoody Formation is exposed across portions of Montana, 

Wyoming, Utah, Nevada, and Idaho in the western United States (Paull and Paull, 1989).  

Underlying the Dinwoody Formation is the Permian aged Phosphoria Rock Complex 

consisting of chert, phosphorite, and limestone (Paull and Paull, 1994). The contact 

between the Upper Permian and Lower Triassic is unconformable with little evidence of 

substantial erosion during the lowstand period (Schock, 1981).  Because of this 

unconformity at the Permian-Triassic boundary, the mass extinction event is not 

recorded (Paull and Paull, 1994). 
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Figure 3. Inferred map of Early Triassic paleogeography (~252 My).  Star indicates 

relative area of study locations on Eastern Panthalassan low-to-mid paleolatitude 

section.  Image modified from Ron Blakely & Colorado Plateau Geosystems, 2011. 

 

The Dinwoody Formation represents a rapid transgression that covered over 

270,000 km2 in the western United States (Fig. 3) (Paull and Paull, 1994).  During the 

highstand and early regression, the Dinwoody Formation was deposited across a flat 

plain that resulted in deposition of mudstone, siltstone, and limestone.  The extent of 

the Permian Sublett basin was mainly within Idaho with overlap on to adjoining states 

including: Montana, Wyoming, Utah, and Nevada (Fig. 4) (Paull and Paull, 1994).  

Subsidence of this basin continued throughout the Early Triassic.  The environmental 

setting throughout the Dinwoody was generally a storm-dominated, distal-to-proximal 

shelf setting (Paull and Paull, 1983; Rodland, 1999).  The maximum thickness of the 

Dinwoody is 745m in southern Idaho. 
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Figure 4. Map of western United States showing boundary and inferred boundary of the 

Dinwoody Formation during the Griesbachian.  Blue triangles indicate localities studied: 

BC = Blacktail Creek, Montana, HP = Hidden Pasture, Montana, MC = Montpelier 

Canyon, Idaho, and BL = Bear Lake, Idaho.  Image modified from Paull and Paull, 1983 

 

The Dinwoody Formation intertongues and is eventually overlain by the 

Woodside Formation in the north, east, and southeast (Paull and Paull, 1983).  The 

strata are overlain by the Thaynes Formation; the boundary of which is determined at 

the base of the cephalopod Meekoceras-bearing limestone of the Lower Thaynes 
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Formation which is approximately 240 million years in age (Paull and Paull, 1983).  The 

study area consisted of four localities in the Dinwoody Formation of the western United 

States.  These localities include: Hidden Pasture and Blacktail Creek in Montana, as well 

as Montpelier Canyon and Bear Lake in Idaho (Fig. 4) (Schubert & Bottjer, 1995; 

Schaefer, 2011; Rodland, 1999, Paull and Paull, 1994).  

 

Chapter 3: Methods 

Field Methods: 

To locate MISS in subtidal marine environments from Griesbachian age strata, 

the study area consisted of four localities in the Dinwoody Formation.  Field work was 

conducted in May of 2013 with field assistant Jenna Rolle and Dr. Margaret.  These 

localities included: Hidden Pasture and Blacktail Creek in southwestern Montana, and 

Montpelier Canyon and Bear Lake in southeastern Idaho (Fig. 4) (Schubert & Bottjer, 

1995; Rodland, 1999; Schaefer, 2011).  Hidden Pasture was selected based on previous 

work by Schock (1981), which was revisited by Rodland (1999).  The Bear Lake and 

Montpelier Canyon sites in Idaho were previously studied by Schubert & Bottjer (1995) 

and Schaefer (2011).  These localities were selected based on the exposure of the 

Dinwoody Formation, accessibility, and presence of MISS.  The Blacktail Creek locality in 

Montana was not included in this study because no MISS were found. 

Stratigraphic sections of the Dinwoody Formation at each locality were made 

from the basal unit up the section until the Dinwoody exposure ended.  A Brunton 

compass was used to take the strike and dip of each bed. The thickness of the section 
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was measured using either measuring tape or a Jacob’s staff, depending on terrain and 

bed thickness.  These general measurements were collected and compiled into 

stratigraphic columns to establish environmental and sedimentological context of the 

section.   

At each locality, samples of bedding planes containing MISS were identified using 

Schieber et al. (2007) genetic process diagrams from both muddy and sandstone 

substrates (Fig. 5).  These processes for MISS formation include mat growth, 

metabolism, destruction and decay, and diagenesis of a mat.  Processes involving the 

microbial mats during their life and following their death yield specific features that are 

identifiable in the field, and are seen on Schieber’s diagrams as arrows radiating from 

the individual process.   

                       

Figure 5. Genetic process diagram for MISS from both muddy and sandstone substrates. 

Modified from Schieber et al., 2007. 
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The presence of body and trace fossils, sedimentary structures, and MISS, as well 

as their proximity to one another in the section, were of particular importance to this 

study and were incorporated into the stratigraphic columns.  The relative abundance of 

each taxon in the bedding planes were quantified with the terms rare and abundant.  

Rare was defined as <10 visible body fossils and abundant as >30 visible body fossils per 

bedding plane.  The amount of bioturbation in the bedding planes was quantified using 

the ichnofabric index (ii) (Droser & Bottjer, 1986).  The ii determines the amount of 

trace fossil activity in a sedimentary rock based off a graded scale of 1-6, with 1 

indicating no bioturbation present and 6 indicating over 60% trace fossil coverage of a 

bedding plane (Droser & Bottjer, 1986). 

  

Lab Methods: 

Photogrammetry  

 Photogrammetry is the use of photographs or other images to capture and 

measure the spatial relationships of the features of a subject (Breithaupt et al., 2004).  

The conditions that must be met to make accurate measurements on the photographic 

images are:  1) two or more photographs taken of the sample that overlap one another 

approximately 66% and, 2) x, y, z points for three defined points on the overlapping 

images. 
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Figure 6. Diagram showing how photogrammetry develops x, y, and z coordinates for 

each point and triangulates the aiming angles for each image. Modified from Geodetic 

Systems website (http://www.geodetic.com/v-stars/what-is-photogrammetry.aspx). 

 

The x and y points are derived from horizontal measurements on the photos, 

while the z point is a vertical value that comes from stereoscopic analysis (Fig. 6).  From 

the overlapping photographs and defined points, contour maps and 3-D images of the 

MISS can be created.  The ultimate goal of this method is to create a classification for 

different MISS present in the Lower Triassic strata.  Breithaupt et al. (2004) used 

photogrammetry on dinosaur tracks to show how these computer-generated surfaces 

can be studied, measured, and interpreted in new ways. 

For the specimens used in this study, the camera was mounted to a stand.  A 

rigid, non-reflective tray was used to fix the sample and two scale bars to, as to ensure 

they maintained a constant position in relationship to one another.  The scale bars were 

placed perpendicular to one another, to the side and below the sample, and were 
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elevated to the level of the sample to ensure accuracy of the depth of field.  The sample 

was then lit from above with a Schott Ace light source.  The Canon Rebel T3 EOS 1100d 

camera used was set to an aperture priority of F16, with the settings auto rotation, 

vibration reduction, and sensor cleaning turned off.   

The tray was first positioned so that just the left side of the sample was in the 

camera’s field of view.  The tray was then carefully moved in a straight, horizontal line 

from left to right, taking pictures at every 66% overlap interval.  After the series of 

landscape oriented photos are complete, the tray was then rotated 90 and 270 degrees 

from the original orientation and the same overlapping photo process is repeated again.   

 

Thin Sections  

 Three thin sections were created, one each from Hidden Pasture, Montpelier 

Canyon, and the Bear Lake localities from bedding planes that contained MISS.  The 

purpose of creating these thin sections was to confirm the presence of microbial 

mediation of the sediments via microscopic characteristics.  Alternating dark and light 

laminations are an indication of MISS due to changes in light intensities from seasonal 

fluctuations in water depth (Schieber et al., 2007).  The dark laminae are primarily 

filamentous cyanobacteria, while the lighter laminae consist of a combination of coccoid 

cyanobacteria, extracellular polymers (EPS) and mineral precipitates (Schieber et al., 

2007).  The EPS trap detrital grains and incorporate them into the microbial mat to aid in 

vertical growth (Decho, 1990; Noffke et al., 2001).  The lighter laminae provide 

protection for low-light filaments that are below the mat surface in the summer, while 
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the dark laminae, present in winter, are adapted to decreased light intensity and replace 

the lighter laminae, creating seasonal layers.  

 Detrital grains oriented parallel to laminations are important indicators of MISS.  

To reduce the friction in the matrix, the mat grains orient with their axis parallel to the 

laminations (Fig. 7) (Schieber et al., 2007).  This grain orientation parallel to laminations 

is characteristic of MISS as gravity-related orientation does not occur in non-microbially 

mediated laminations. 

 

 

Figure 7. Biolaminate containing matrix-supported sediment grains with their long axes 

parallel to the laminations. Modified from Schieber et al., 2007. 

 

Additionally, the preferential selection and lamina-specific distribution of heavy mineral 

grains in MISS is distinctive versus random grain adhesion in non-microbially mediated 

laminations and is supporting evidence for microbial activity (Schieber, 1999).  
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The presence of mica grains is also characteristic of MISS, as microbial mats 

preferentially bind and trap them versus other detrital grains (Schieber et al., 1998; 

Schieber et al., 2007). 

 

XRF 

 Determining whether the samples were depleted or enriched of specific trace 

elements allowed the analysis of the paleoenvironmental redox conditions of the Lower 

Triassic samples. Seven total siltstone samples containing MISS were examined using X-

ray Fluorescence (XRF) analysis: three samples from Montpelier Canyon, two from Bear 

Lake, and two from Hidden Pasture.  The three samples analyzed from Montpelier 

Canyon were sourced from Bed 1, while both Bear Lake samples were from Bed 3.  The 

two Hidden Pasture samples came from two different beds at approximately 180 m and 

224 m. 

The samples were prepared using a shatterbox rock crusher, followed by a 

mortar and pestle to obtain a very fine consistency.  All samples were dried overnight in 

a 105°C oven to remove any excess water.  The loss on ignition (LOI) was calculated by 

heating one gram of each sample in a muffle furnace at 1050 °C for 10 min (methods of 

McHenry, 2009).  Following the XRF techniques and methodology of McHenry (2009), a 

Bruker S4 Pioneer X-ray Fluorescence (XRF) Spectrometer was used to analyze all seven 

samples.  Ten grams of 50:50 lithium metaborate: lithium tetraborate flux, with a 1% 

LiBr non-wetting agent, was added to ~1 gram of ammonium nitrate and 1.000 gram of 

our sample specimen (McHenry, 2009).  Using a Claisse M4 fluxer, these mixtures were 
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fused into glass beads, and then analyzed using a Bruker S4 Pioneer XRF for major, 

minor, and trace elements (The elements analyzed include Y, Zr, Nb, V, Zn, Ni, Cr, Co, Ce, 

Sr, Ba, and Mn.  A calibration curve for these elements based off of 11 USGS rock 

standards of sedimentary and igneous rocks of varying compositions was used. 

The trace elements vanadium, nickel, and chromium were selected for use in this 

study because of their redox sensitivity, their common use and prevalence in the 

literature, as well as their ability to be detected and measured by the XRF (Kloss, 2012).  

Vanadium is particularly useful when determining redox conditions.  It has three 

oxidation states: V(V) which is stable under oxic conditions, V(IV) which is stable under 

reducing conditions, and V(III) which is present under reducing, sulfidic conditions 

(Calvert and Pederson, 1993; Kloss, 2012). Chromium’s valence state is affected by 

changing redox conditions, and nickel is increasingly depleted in marine settings as the 

seawater becomes anoxic (Kloss, 2012). V, Cr, and Ni concentrations were normalized 

for this paleoredox analysis by using enrichment factors (EF). The paleoredox ratios of 

V/Cr and V/(V + Ni) were the preferential equation to normalize the data and complete 

the paleoredox analysis.  

Enrichment factors generally work by comparing the concentration of a trace 

element in the sample to a concentration commonly used for crustal rocks, or in this 

case a “standard” shale (Table 1) (Wedepohl, 1971; Tribovillard et al., 2006).  Calcium 

carbonate and opal are often biogenic diluents of the trace elements to be measured.  

Therefore, EF’s are calculated by normalizing the trace element concentration to the 

aluminum content, which is typically tied to the siliciclastic component of the sediments 
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and which has very little ability to be lost during diagenesis (Calvert and Pederson, 1993; 

Tribovillard et al., 2006).  The following equation is used to calculate standard 

enrichment factors: 

EF element X = (X sample/Al sample) / (X average/Al average shale). (1) 
 

If the EFX is greater than 1, than the trace element is enriched compared to 

average shales, and if the EFX is less than 1, it is depleted (Equation 1) (Tribovillard et al., 

2006).  Enrichment factor methodology limitations are discussed in Tribovillard et al. 

(2006).  

Elements Average 
concentration 
in seawater 
(nmol/kg) 

Residence time 
in seawater 
(kyr) 

Average 
shale     
(μg/g) 

Cr 4.04 8 90 

Ni 8.18 6 68 

V 39.3 50 130 

Al     88,900 

 
Table 1. Geochemical data for trace elements studied (Tribovillard, 2006). 

 

The lower limit of detection (LLD) was also used to assess the quality of the trace 

element concentration data. Concentrations were analyzed using the following 

equation: Concentration of trace element (PPM) / (LLD x 2).   Element concentrations 

were compared to the LLD. If the concentration in PPM (parts per million) was not 

higher than double the LLD, the value was too low for detection and not used in this 

study. 
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Chapter 4: Results: Stratigraphic Analysis 

Bear Lake, Idaho: 

The Bear Lake measured stratigraphic section consists of 28 m of Dinwoody 

Formation.  The Dinwoody is overlain by the Permian-aged Phosphoria Formation here, 

indicating the section has been overturned (Fig. 8).   

 

Figure 8.  (Left) Base of Dinwoody Formation at Bear Lake.  Section is overturned, 

overlying strata is Permian-aged Phosphoria Formation.  (Right) Top of Dinwoody 

section at Bear Lake. 

 

The Dinwoody Formation at Bear Lake is composed entirely of light to dark grey 

siltstone beds throughout the section (Fig. 11).  The basal unit is approximately 0.5 m 

thick and is comprised of finely laminated, dark gray to black shale (Fig. 9). Above the 

basal unit is 3m of light brown to light red siltstone with laminations as the only visible 

sedimentary structure. The trace fossil Planolites is present but rare, and no other fauna 

were observed in this portion of the Dinwoody.  There was no bioturbation visible, 

indicating an ii of 1. 



www.manaraa.com

26 

 

               

Figure 9.  Basal unit of Dinwoody at Bear Lake.   

 

A steep sloped, covered interval 10 m thick overlies the basal beds.  The top of 

the Dinwoody Formation at Bear Lake consists of 14 m of highly weathered, laminated 

siltstone.  Lingulid brachiopods and the bivalve Claraia occur in these upper beds in 

moderate abundance with rare trace fossils of Thalassinoides and Planolites, giving the 

section an ii of 2.  MISS in this unit are rare, and are found with small numbers of 

lingulids and Claraia (Fig. 10).   

The only sedimentary structures preserved in this interval were microbially-

mediated interference ripples and MISS (Fig. 10).  
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Figure 10. (Top) Sample from top unit of Dinwoody at Bear Lake. Arrows indicate the 

bivalve Claraia and circle indicates MISS on same bedding plane. (Bottom) Magnified 

image of MISS from above image. 
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Figure 11. Stratigraphic column of Bear Lake, Idaho.  Includes ichnofabric indices (ii) 

chart to the right of the column.  Dots on ii graph indicate data points where 

information was collected. 
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Interpretation 

The Dinwoody Formation at Bear Lake consists entirely of finely laminated siltstone 

beds that were deposited in middle to outer shelf facies.  The lower 3.5 m of the 

Dinwoody at Bear Lake contains rare trace fossils and dark grey laminations, both of 

which likely indicate a subtidal setting.  The increasing presence of fossils and 

sedimentary structures in the top 14 m would indicate increasing oxic conditions. 

 

Montpelier Canyon, Idaho: 

The Montpelier Canyon stratigraphic section contains approximately 17 m of 

Dinwoody Formation strata that are overlain by the Thaynes Formation (Fig. 14).  The 

basal unit of this section consists of 9 m of fine-grained, laminated siltstone (Fig. 12).   

 

Figure 12. (Left) Image of Dinwoody Formation at Montpelier Canyon.  Circle indicates 

basal unit containing MISS.  (Right) Close up of basal unit of Dinwoody showing 

laminations and bedding. 
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The bottom 3 m contains laminations that are highly weathered with rare 

hummocky cross stratification.  This interval contains MISS with rare lingulid 

brachiopods, Claraia, and Planolites present on the same bedding planes (Fig. 13). 

 

 

Figure 13. MISS from basal unit of Dinwoody Formation at Montpelier Canyon. 

 

Abundant mica can also be seen on bedding planes associated with MISS, often giving 

the rocks a slightly blue appearance.  The basal interval has an ii of 1 due to an absence 

of ichnofossils. 
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Figure 14. Stratigraphic column of Montpelier Canyon, Idaho.  Includes ichnofabric 

indices (ii) chart to the right of the column.  Dots on ii graph indicate data points where 

information was collected. 
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The overlying interval is 6 m thick and includes abundant lingulid brachiopods, 

Claraia, and the trace fossil Planolites.  There are no visible sedimentary structures here, 

possibly due to significant bioturbation with an ii of 4.  While no lithological or structural 

changes occur at the top of this interval, the ii dips significantly to 1 and Claraia no 

longer appear.   

Overlying the siltstone is a lithology change to highly weathered limestone that 

preserved no visible fossils or sedimentary structures.  Directly above this weathered 

limestone layer is a highly bioturbated (ii of 4) siltstone bed with hummocky cross 

stratification and ripple marks.  This siltstone interval is bedded towards the base of the 

unit with thinner laminations towards the top and rare lingulid brachiopods.    

The top of the siltstone bed at 11 m is an area of significant structural 

deformation that is depicted as a covered interval in the stratigraphic column (Fig. 14).  

There is likely a fault running through this exposure, as there is evidence of linear 

deformation of the strata.  For the purposes of this study, we did not examine this 

deformed area.  The top bed of the Dinwoody Formation at Montpelier Canyon from 15 

to 17 m consists of siltstone, with hummocky cross stratification but no visible fossils. 

 

Interpretation 

 The Dinwoody Formation at Montpelier Canyon consists primarily of finely 

laminated siltstone deposited in middle to outer shelf facies.  Episodic increases in the ii 

are loosely associated with hummocky cross stratification and ripple marks, along with 

an increased fossil presence and the absence of MISS.  The lithology of highly 
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metamorphosed strata from 11-15 m is undeterminable, but a lower limestone interval 

from 9-10 m, along with the unidentified metamorphosed beds, episodic increases in ii, 

and intermittent sedimentary structures throughout the formation supports the overall 

interpretation that these strata were deposited under episodic oxygen increases.   

 

Hidden Pasture, Montana: 

The Hidden Pasture section of the Dinwoody Formation is approximately 240 m thick 

and is overlain by and intertongues with the Woodside Formation.  The basal unit of this 

section consist of 33 m of brown/gray siltstone with laminations that is mostly covered 

(Fig. 15).  Claraia and rare lingulid brachiopods occur in this unit, but trenching was 

required to see these macrofossils in situ.  Overlying the basal unit is a 20 m mudstone 

bed that contained abundant Claraia, but no other fossils.  As in the basal beds, 

significant trenching was required to obtain fossils in situ.  There were no other trace 

fossils, macrofossils, or sedimentary structures found in the lower 53 m of the Dinwoody 

Formation exposed here, and both units have an ii of 1.   

Following an approximately 80m covered interval are alternating limestone beds and 

covered intervals.  The wackestone and packstone beds exposed between 127 m and 

145 m contain rare lingulid brachiopods, abundant microgastropods, and abundant 

bivalves.  From 145 m to 147 m, a lithology change to silty limestone occurs, followed by 

three intervals of exposed limestone units that are increasing in fossil abundance from 

wackestone to packstone.  Bivalves were seen in all four of these units, from 145 m to 

175 m, with rare lingulid brachiopods seen in the silty limestone and top limestone unit.   
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Figure 15. Stratigraphic column of Hidden Pasture, Montana.  Includes ichnofabric 

indices (ii) chart to the right of the column.  Dots on ii graph indicate data points where 

information was collected. 
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At the 180 m interval, a thinly laminated, 1 m thick siltstone shows the first 

occurrence of MISS in the Hidden Pasture section (Fig. 16).   

 

Figure 16.  MISS from Dinwoody Formation at Hidden Pasture. (Left) Found at 

approximately 180 m and (Right) and 225 m respectively. 

 

This unit contains interlaminated packstone with abundant bivalves and lingulid 

brachiopods, and beds containing MISS with rare lingulid brachiopods.  A siltstone 

interval with a coarsening upward trend starts at 193 m and continues to 245 m 

upsection.  The siltstone unit from 193 m to 199 m contains ripple marks and cross 

bedding associated with bivalves, lingulid brachiopods, and the trace fossils Arenicolites, 

Rhizocorallium, Planolites, and Thalassinoides (Fig. 17).  
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Figure 17.  Ripples from Dinwoody Formation at Hidden Pasture at approximately 195 

m. 

 

 From 199 m to 240 m, silty limestone units alternate with covered intervals and an 

interbedded siltstone and limestone unit from 227 m to 229 m.  The silty, limestone rich 

beds contain broken bivalves and lingulid brachiopods in dense packstones, found in 

association with the trace fossils Arenicolites, Rhizocorallium, Planolites, and 

Thalassinoides.  The interbedded siltstone and limestone unit from 227 m to 229 m 

contains bivalve hash and the trace fossil Planolites, which is mirrored in the top unit of 

silty limestone from 234 m to 236 m.  However, the top unit changes from packstone, 

seen in the previous silty limestone beds, to wackestone beds. At approximately 223 m, 

a reappearance of MISS occurs associated with rare lingulid brachiopods and bivalves.  

This MISS-bearing bed has an ii of 1, unlike the top 35 m of the section, which displays 

an ii of 4.   
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Interpretation  

 The Dinwoody Formation at Hidden Pasture is representative of the initial 

transgression and subsequent shallowing during the Griesbachian.  This is evidenced by 

laminated siltstone and mudstone facies lower in the formation associated with the 

disaster taxa Claraia and lingulid brachiopods.  From 130-180 m a limestone lithology 

dominates with a general coarsening upward sequence from wackestone to packstone 

beds of predominately bivalves, rare lingulid brachiopods, and microgastropods 

suggesting the package shallowed upward.  These alternating beds at top of the 

Dinwoody Formation at Hidden Pasture indicate a relative stability of the sea level on 

the shallow shelf among the top 60 m of the Dinwoody at Hidden Pasture (Paull and 

Paull, 1989).   

Significant fluctuations in ii were observed in the top of the formation, 

alternating sharply between 1 and 4.  A general trend of an ii of 1 is seen in the siltstone 

beds, while the more limestone rich beds have an ii of 4.  At 180 m and 224 m, MISS are 

observed associated with an ii of 1, lingulid brachiopods, Claraia, and the trace fossil 

Planolites.   These MISS bearing beds are clearly defined from the surrounding beds that 

have an ii of 4 and increased fossil abundance.  These periods of low ii associated with 

MISS could be directly related to upwelling of the OMZ which would bring anoxic waters 

onto the shallow shelf, or simply be related to the magnitude of the extinction and its 

aftermath (Algeo et al., 2010, 2011).   
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Chapter 5: Results: Photogrammetry 

There were several issues encountered using photogrammetry for the first time 

on this small of a spatial scale. The instructions were created through a series of trial 

and error between Brent Breithaupt and Neffra Matthews from the Bureau of Land 

Management and myself.  The camera settings were modified for the scale change from 

their current use on larger-scale features, such as dinosaur tracks, as well as 

adjustments made based on the variances in cameras used, as each has slightly different 

settings and features.  

Lighting was also an issue encountered when photographing these small scale 

images.  Large scale photogrammetry is used outdoors with sunlight as overhead 

lighting to capture minute details of the object.  On these small scale objects, however, 

the limited light source available often cast shadows or was not directly above the 

object to properly illuminate all of the surface features.   

The most significant issue encountered was developing a set of photographs that 

provided the proper orientations of the samples to get sufficient coverage required for 

photogrammetry. Multiple attempts were made to create a set of photographs with the 

proper tray orientations to obtain the greatest quality and detailed 3-D images.   
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Figure 18.  (Top) Photogrammetry trial run that produced an image that created a “+” 

configuration of pictures.  The blue boxes represent individual pictures taken. (Bottom) 

Photogrammetry attempt that developed an “H” shaped configuration. 

 

The last trial run produced an image that created a “+” configuration of pictures, which 

was unsuccessful as it only left a small area of intersection between the two lines (Fig. 

18).  However, previous attempts had developed an “H” shaped configuration that 

provided the maximum overlap for deriving camera and lens information (Fig. 18).  
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Ultimately, we were unable to develop a set of photos that we could take 

measurements from to classify the MISS in the samples.  However, this project is 

ongoing and collaboration with Brent Breithaupt and Neffra Matthews continues with 

the eventual goal of publishing our results.  

 

Chapter 6: Results: Thin Sections 

 Three thin sections, one each from the localities in this study, were examined.  

The Montpelier Canyon sample exhibited several of the microscopic characteristics 

associated with microbial mediation. This thin section contained alternating dark and 

light laminations, wavy to crinkly laminae, detrital grains oriented parallel to these 

laminations, and the preferential selection of heavy mineral grain adhesion (Fig. 19).  

 

Figure 19. (Left) Image of Montpelier Canyon thin section under 10x magnification.  

Yellow line indicates outline of alternating light and dark laminations.  Dashed yellow 

line indicates inferred boundary of light and dark laminations.  (Right) Same Montpelier 

Canyon thin section under 10x magnification.  Yellow arrows indicate elongate mica 
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grains oriented parallel to the crinkles and laminations.  Orange arrows indicate altered 

minerals.  Both of these thin sections are from Bed 1 of the Dinwoody Formation at 

Montpelier Canyon.   

 

The mica grains are elongate with little alteration and are oriented parallel to the 

laminations.  Other minerals were observed in the laminations, but were too heavily 

altered to determine their original orientation and mineralogy (Fig. 19). 

 

Figure 20. (Left) Image of Hidden Pasture thin section under 10x magnification.  Yellow 

arrows delineate highly altered, oblique minerals generally aligned in wavy patterns 

throughout the thin section. (Right) Image of Hidden Pasture thin section under 20x 

magnification.  Yellow arrow shows heavy, highly altered mineral grains in finer detail 

within the thin section.  This thin section was taken from a sample approximately 225 m 

from the base of the Dinwoody at Hidden Pasture.   
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Similarly, the Hidden Pasture sample exhibited highly altered mineral grains, 

potentially from oxidizing and reducing geochemical environments.  The mineral grains 

were too weathered to determine their original orientation and composition.  The 

majority of these heavy, oblique minerals are concentrated in wavy patterns throughout 

the sample, although some persist in the lighter matrix as well (Fig. 20).  It is 

indeterminate whether these heavy grain patterns constitute laminations and/or 

indicate microbial mediation. 

 

 

Figure 21.  (Left) Image of Bear Lake thin section under 10x magnification.  (Right) Image 

of Bear Lake thin section under 20x magnification.  Yellow arrows indicated mica grains 

and their general orientation in the sample.  Both of these thin sections are from 

samples approximately 25 m from the base of the Dinwoody at Bear Lake.   
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Chapter 7: Results: Classification of MISS in the Griesbachian 

 Three distinct types of MISS were identified in the Lower Triassic strata 

examined in this study.  Hidden Pasture produced MISS identified as multidirectional 

ripple marks (Noffke et al., 2001; Schieber et al., 2007).  These multidirectional ripple 

marks originally form as ripple marks that are created most commonly by storms, then 

covered in microbial mats.  The final pattern of disordered ripples occurs when the mats 

continue to develop with episodic disturbance of the sediment, most commonly due to 

storm activity (Fig. 22) (Noffke et al., 2001).   

 The thin section created from a Hidden Pasture sample containing MISS shows a 

series of heavy minerals concentrated in wavy patterns throughout the sample (Fig. 20).  

It is indeterminate whether these heavy grain patterns constitute laminations and/or 

microbial mediation in this thin section.  However, the physical characteristics of 

multidirectional ripple marks are consistent with the two samples examined and 

therefore a classification of MISS can be made. 
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Figure 22. Multidirectional ripple marks from Hidden Pasture sample. 

 

 The Montpelier Canyon locality produced what are considered “classic” wrinkle 

structures (Fig. 23) (Hagadorn & Bottjer, 1999; Schieber et al., 2007).  These are 

elongate, rounded wrinkle structures that are generally parallel with a moderate crest 

height.  These classic wrinkle structures form from a leveling of ripple marks on a tidal 

surface (Noffke et al., 2001).  The microbial mat will grow preferentially into the troughs 

of the ripple, over time forming a planar mat surface (Noffke et al., 2001). 
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Figure 23.  Classic wrinkle structures on Montpelier Canyon sample. 

 

 The thin section created from a Montpelier Canyon sample with MISS showed all 

the classic microscopic characteristics associated with microbial mediation.  These 

include alternating dark and light laminations, wavy to crinkly laminae, detrital grains 

oriented parallel to the laminations, and preferential selection of heavy mineral grain 

adhesion.  From these microscopic and physical characteristics a definitive classification 

of MISS can be made for these samples. 

 The Bear Lake locality produced MISS classified as having a “crinkly” texture (Fig. 

24) (Schieber et al., 2007).  This texture has polygonal crests and are formed by 

disruption to the surface of a mat, such as from the impact of moving grains (Schieber et 

al., 2007).    
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Figure 24. Crinkly wrinkle structures on Bear Lake sample. 

 

The thin section created from the Bear Lake sample with MISS showed no microscopic 

characteristics of MISS.  However, the physical characteristics of these samples is 

representative of microbial structures, and therefore can be classified as such. 

 While only the Montpelier Canyon thin section showed conclusive microscopic 

characteristics of MISS, one thin section from each locality was not likely representative 

of the entire stratigraphic section, or even each bedding plane containing MISS.  Just as 

important are the physical definitions of MISS, which all seven samples exhibited some 

characteristics that enabled that classification.   
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Figure 25.  Microbially induced phenomena in classification of primary sedimentary 

structures based off of Pettijohn and Potter (1964).  Image modified from Noffke, 2001. 

 

 Further, all the samples fall under the classification of primary sedimentary 

structures following Pettijohn and Potter (1964), including the new category of 

microbially induced phenomena (Fig. 25) (Noffke et al., 2001).  All seven are Class A 

structures, identified as developing on bedding planes, rather than within beds. 

 

Chapter 8: Results: Geochemical Analysis 

Compositional Analysis 

The compositional analysis of the seven samples shows mixed 

carbonate/siliciclastic sediments.  Silica (SiO2) levels ranged from ~ 33% to 58% of the 

samples’ total composition (Table 2).  CaO and CO2 were the other main components at 

a range of ~ 9% to 30% and ~ 12% to 25% composition respectively.   
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Sample MC1-1 MC1-2 MC1-3 BL3-1 BL3-2 HP6-1 HP7-1 

SiO2 32.88% 47.55% 33.12% 57.50% 45.52% 47.87% 46.31% 

TiO2  0.34% 0.50% 0.32% 0.27% 0.27% 0.54% 0.41% 

Al2O3 6.78% 5.83% 6.08% 7.26% 6.75% 12.02% 5.67% 

Fe2O3  2.24% 2.03% 2.05% 1.58% 2.11% 4.57% 1.86% 

MgO  2.41% 1.62% 2.29% 1.74% 2.25% 4.42% 1.69% 

CaO  28.34% 21.09% 29.89% 13.09% 20.66% 8.86% 21.56% 

Na2O  0.83% 1.12% 0.97% 2.69% 2.06% 0.63% 1.05% 

K2O  1.52% 1.57% 1.20% 0.97% 0.92% 3.32% 1.52% 

P2O5  0.16% 0.23% 0.15% 0.13% 0.12% 0.17% 0.24% 

CO2  24.22% 12.21% 24.91% 12.54% 18.62% 18.17% 18.73% 

Mn  0.10% 0.65% 0.12% 0.06% 0.20% 0.05% 0.70% 

V  48 ND ND ND ND 90 ND 

Cr  44 41 39 ND 22 62 34 

Zn ND 62 45 ND ND 87 66 

Sr  190 189 193 164 212 123 169 

Zr  112 409 109 75 78 114 287 

Ba  148 225 147 358 1195 287 185 

Ce  128 177 151 ND ND 155 166 
Sum 
(%) 99.90 94.53 101.17 97.91 99.66 100.72 99.84 

LOI 24.22% 12.21% 24.91% 12.54% 18.62% 18.17% 18.73% 
 

Table 2. Major elements of the carbonate/siliciclastic samples tested in this study (XRF). 

Results reported at wt% oxide except V, Cr, Zn, Sr, Zr, Ba, and Ce, which are reported in 

PPM (parts per million) (McHenry, 2009).  Sample name indicates locality and sample 

number. MC = Montpelier Canyon, BL = Bear Lake, and HP = Hidden Pasture.  

 

Trace Element Concentrations 

 Nickel.  Nickel was only detected in high enough concentrations in one of the 

samples from Hidden Pasture.  This sample only showed very minute amounts of the 
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trace element, at 34 parts per million (PPM), and therefore the paleoredox ratio of V/(V 

+ Ni) was not used in this study.  

 Vanadium.  The trace element Vanadium was only detectable in two samples at 

high enough concentrations to be measured.  In a sample from Montpelier Canyon 

(MC1-1) the V concentration was 48 PPM with an EF of 0.91 and a sample from Hidden 

Pasture (HP6-1) the concentration was 90 PPM with an EF of 0.97 (Table 3).  Both of 

these EF’s are below 1, indicating that these samples are depleted of Vanadium.  The 

paleoredox ratio of V/Cr was used for the two samples with high enough detection, 

indicating 1.09 for the Montpelier Canyon sample and 1.45 for the Hidden Pasture 

sample.  These two ratios are indicating reducing conditions. 

 Chromium. The trace element Chromium was detected in high enough 

concentrations in six of our seven samples.  These concentrations range from 22 PPM to 

62 PPM (Table 3).  Initially the paleoredox ratio of V/Cr was the preferential equation to 

normalize the data and complete the paleoredox analysis.  While six of the seven 

samples contained Chromium high enough to obtain substantial data, only two samples 

of Vanadium were at detectible levels, making any results of the normalization weak. 

Calculating 4 of the 6 samples has shown an EF above 1, which would indicate these 

samples are enriched with chromium (Table 3).   
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Sample Al 
(PPM) 

Cr  
(PPM) 

Enrichment 
Factor        

(EF) of Cr 

V 
(PPM) 

Enrichment 
Factor        

(EF) of V 

Paleoredox 
Ratio V/Cr 

MC1-1 35,887 44 1.22 48 0.91 1.09 

MC1-2 30,858 41 1.30 ND    

MC1-3 32,181 39 1.20 ND    

BL3-1 38,427 ND   ND    

BL3-2 35,728 22 0.62 ND    

HP6-1 63,622 62 0.97 90 0.97 1.45 

HP7-1 30,011 34 1.12 ND    

 
Table 3. Enrichment factor values for vanadium and chromium. 
 

The values given (Table 4) show that any value beneath 100% of the sample was below 

detection rate; these values are marked in red.  Common trace elements that were in 

concentrations too low for detection for all or most samples were Nb, Co, Ni, and V.   
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Table 4. Trace element concentration, statistical error, and concentration versus twice 

LLD.  LLD units is PPM (parts per million).  Elements below detection are marked in red. 
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Chapter 9: Results: MISS and their Associated Fossils 

The three localities observed in this study all contain MISS consistently 

associated with the same lithological characteristics and fossil assemblages.  Each 

bedding plane containing MISS was composed of siltstone deposited in middle to outer 

shelf settings.  Additionally, at both Hidden Pasture and Montpelier Canyon the 

ichnofabric indices associated with the bedding planes containing MISS was 1 (the Bear 

Lake locality the ii was 2, indicating that bioturbation was either entirely absent, rare, or 

primarily horizontal in bedding planes with MISS.  All three localities show a low ii in 

their siltstone beds. 

The associated fossils and abundances of fossils are distinct in bedding planes 

containing MISS versus ones without. Lingulid brachiopods and the bivalve Claraia are 

found in every bedding plane containing MISS.  Linguilids and the bivalve Claraia are 

both well adapted to low-oxygen environments which are generally associated with 

MISS (Wignall, 199X; Schubert & Bottjer, 1995; Rodland & Bottjer, 2001).  While both of 

these taxa are found also in bedding planes not containing MISS, their abundance is far 

lower in the MISS beds versus other siltstone bedding planes.   

The trace fossils Planolites and Thalassinoides are the only ichnofossils found 

associated with bedding planes containing MISS in this study.  Planolites is a simple, 

horizontal burrow that is a common feeding trace found in Lower Triassic strata (Table 

5) (Pruss et al., 2004).  Thalassinoides is the only other trace fossil found associated with 

MISS and is a branching trace with either horizontal or shallow vertical burrows (Pruss et 

al., 2004).  These trace fossils are rare in the Griesbachian, increasing in diversity and 
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abundance from the earliest to late Early Triassic, and indicate metazoan behaviors in 

the earliest part of the recovery (Pruss et al., 2004). 

 

Table 5. (Top) Table showing Lower Triassic trace fossils studied in North America and 

western Canada (Modified from Pruss et al., 2004).  (Bottom) Table showing location of 

MISS bedding planes and the associated trace fossils. 
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 The MISS examined in the three locations for this study all have similar 

characteristics, associations, and environments.   While the MISS in each locality are 

classified differently, they all encompass the physical characteristics attributed to MISS 

by Pettijohn and Potter (1964) and Noffke (2001).  The Montpelier Canyon thin section 

also showed evidence of microbial mediation through alternating dark and light 

laminations, wavy to crinkly laminae, detrital grains oriented parallel to these 

laminations, and the preferential selection of heavy mineral grain adhesion.  

 Additionally, the MISS are consistently found associated with the same fossil 

assemblages of disaster taxa and low ii, as well as similar lithological and environmental 

settings.  Each unit containing MISS examined was primarily composed of finely 

laminated siltstone deposited in middle to outer shelf facies with a bottom water signal 

showing oxic to suboxic conditions.   

Chapter 10: Discussion 

Environmental Implications of MISS Following the PTME 

 Modern microbial mats that are composed of heterotrophic microbes consume 

oxygen by remineralizing organic material from the overlying water column and from 

the mat itself (Froelich et al., 1979; Reimers and Suess, 1983; Bender and Heggie, 1984; 

Bailey et al., 2006).  Microbial respiration also consumes oxygen from oxygenic 

phototrophs at the mat surface as well as the water column.  Anoxia can potentially 

then reach the mat surface even if the overlying water column is oxygenated (Jørgensen 

and Revsbech, 1985).  
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If modern microbial mats are used as a proxy for Early Triassic ones, it can be 

deduced that these microbial communities would have created anoxic conditions            

< 2mm below the sediment/water interface during the day and at the interface at night 

(Jørgensen et al., 1992; Bailey et al., 2006).   

 

Figure 26. (Left) Sediment profile with microbial mat containing lingulid brachiopods and 

the bivalve Claraia. Blue indicates oxygenated porewaters and red indicates hydrogen 

sulfide rich porewaters versus depth.  Within 1-2 mm of surface, oxygen disappears and 

is replaced by hydrogen sulfide, which decreases as it nears the surface and becomes 

oxidized.  Side view of sediments shows little to no vertical bioturbation due to the 

hydrogen sulfide rich sediments. (Right) Sediment profile not containing a microbial 

mat.  Blue indicates well oxygenated porewaters deeper versus a mat covered 

sediment.  Hydrogen sulfide in red is constrained to deeper in the sediment as its 

concentration is inversely related to the amount of oxygen present.  Side view of the 

sediments show they are highly bioturbated due to elevated oxygen levels. Modified 

from Bailey, 2006.   
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The concentration of oxygen in the porewaters is inversely related to the 

concentration of hydrogen sulfide, which is oxidized as it reaches the sediment surface 

(Fig. 26) (Bailey et al., 2006).  The hydrogen sulfide in the sediments is produced through 

bacterial sulfate reduction (Meyer et al., 2008). 

 Since the porewaters containing microbial mats were likely anoxic, the hydrogen 

sulfide could potentially have reached the sediment-water interface (Bailey et al., 2006).  

The proliferation of microbial mats would have created anoxic and euxinic porewaters 

and made vertical bioturbation physiologically difficult (McIlroy and Logan, 1999).  

Following the PTME, the Griesbachian was a time of ecological stress as evidence 

suggests widespread marine anoxia, euxinia, and hypercapnia in the water column (Luo 

et al., 2011; Brennecka et al., 2011; Algeo et al., 2011).  These ecological barriers to 

faunal recovery were likely exacerbated by the physiologically stressed benthic 

environments created by the proliferation of microbial mats.  

MISS were found in three of the four localities examined in this study.  While this is 

only a small cross section of the Griesbachian strata in the western United States, the 

common presence of MISS in subtidal environments at the localities studied leads to the 

conclusion that MISS proliferated during the Early Triassic.  There is also the 

consideration that MISS are not always preserved due to a small taphonomic 

preservation window that must be met, so the absence of MISS does not necessarily 

mean they were not present. 
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Geochemical Evidence Against Anoxia   

Chromium. The EF’s for 4 of the 6 samples of chromium show that the bottom 

waters containing MISS are reducing.  Tribovillard (2006) states that under normal 

ocean conditions the chromate anion is soluble, but Cr(IV) is reduced to Cr(III) under 

anoxic conditions and is transported into the sediments.  However, Cr transport and 

enrichment are very complex and often reduce the limit of its paleoenvironmental 

utility (Tribovillard, 2006). The paleoredox ratio of V/Cr was the preferential equation to 

normalize the data and complete the paleoredox analysis.  However, only two samples 

of Vanadium were at detectible levels, making any results of the normalization weak.   

Vanadium. The lack of V in five of the seven samples, coupled with EF’s of less 

than 1 for the two samples that did have detectable V, both indicate that there are not 

reducing conditions in these bottom waters.  Redox sensitive elements like V and Ni are 

deposited preferentially under these reducing conditions (McHenry, 2014).  While the 

average shale concentrations have their shortcomings as stated above, and the two V/Cr 

ratios indicated reducing conditions, the overall evidence that the V concentrations are 

so far below the EF standard indicates that this element was not being concentrated in 

anoxic sediments (McHenry, 2014).   

 Nickel. Nickel was an integral trace element to use in our study as it is 

increasingly depleted in reducing sediments and cycled into the overlying bottom 

waters (Tribovillard, 2006).  Only one sample contained high enough concentrations of 

Nickel for measurement.  Such low levels of nickel would indicate that the bottom 

waters are oxic and that without reducing conditions, Nickel fixation within the 
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sediments could not take place.  In the initial phases of the study, the use of the 

equation V/(V+Ni) was ideal to normalize the data for this paleoredox analysis.  

However, since only one sample contained enough and in such a minute amount, this 

ratio of paleoredox indices was abandoned for the use of EF’s. 

 Also a factor in this study is that these samples are largely composed of 

carbonate material.  The paleoredox studies are not as well adapted to a carbonate 

component, and carbonate rock samples herein are compared to the average shale 

value.  The normalization to Al is to our benefit, as it correlates to the more detrital and 

non-carbonate component (McHenry, 2014).  Future XRD analysis will be conducted to 

see the carbonate component more clearly, and make adjustments for a more accurate 

picture.  

 The geochemical analysis performed on the seven samples indicate that the 

bottom water signals associated with MISS were oxic to suboxic. The Vanadium’s EF’s of 

<1 for all the samples, combined with an absence of Nickel and undetectable limits for 

many other redox sensitive elements, leads to the conclusion that the bottom waters 

were not reducing.  While Chromium in 4 of 7 samples showed EF’s greater than 1, 

indicating reducing conditions, Cr transport and enrichment can be very complex and is 

most accurate when normalized with the paleoredox ratio of V/Cr (Tribovillard et al., 

2006).  Only two samples of Vanadium were at detectible levels, not only making any 

interpretations of a normalization of Chromium weak, but this absence supports the 

oxic to suboxic interpretation of these bottom waters.  These geochemical proxies only 
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indicate the extent that bottom waters of sediments containing MISS were oxic and do 

not indicate if the porewaters were oxic versus anoxic. 

 

Opportunism and Disaster Taxa 

MISS, lingulid brachiopods, and the bivalve Claraia are all characterized as 

disaster taxa for their ability to proliferate in environments where conditions are 

deleterious to most animals (Fischer and Arthur, 1977; Pruss et al., 2004; Pruss et al., 

2005).  The opportunistic nature of these organisms allows them to fill niches left vacant 

from events such as mass extinctions.  Opportunists are organisms that thrive and 

increase in abundance during a recovery period, but return to lower levels of abundance 

subsequently (Hallam & Wignall, 1997; Rodland & Bottjer, 2001).  Disaster taxa are a 

type of opportunist that overrun vacated ecospaces during recovery periods, but are 

subsequently forced into marginal settings when the recovery gains momentum (Hallam 

& Wignall, 1997; Bottjer, 2001; Rodland & Bottjer, 2001). 

The restricted presence of MISS before the extinction, proliferation following the 

PTME, and subsequent retreat after the recovery is characteristic of the opportunistic 

nature of disaster taxa.  Accordingly, microbial communities have dominated the 

subtidal realm only sporadically throughout geologic history.  During the Early Cambrian, 

microbial communities dominated due to a lack of competition and extensive 

bioturbation prior to the Cambrian radiation (Bailey et al., 2006).  This period of 

domination is not an example of opportunistic behavior as no competition for ecospace 

yet existed.   
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Evidence exists for microbial communities dominating subtidal environments during 

the recovery of the End Ordovician, End Devonian, and End Permian mass extinctions 

(Mata & Bottjer, 2012).  The End Triassic and End Cretaceous extinctions have not yet 

been associated with the expanse of microbial communities (Mata & Bottjer, 2012).  The 

two important factors that facilitated these proliferations are low bioturbation and 

vacant ecospace resulting from these mass extinctions.  The scarcity of benthic faunas 

allowed the microbial communities to dominate in environments where during stable 

ecological conditions they are outcompeted.   

Certain disaster taxa, such as lingulid brachiopods and the bivalve Claraia, were able 

to overcome the physical obstacles the microbial mats created and utilize them as an 

ecological niche.  Although the hydrogen sulfide that the mats produce is toxic to most 

metazoans, many modern infaunal animals have found ways to reduce the toxicity by 

using chemoautotrophic bacteria to oxidize the hydrogen sulfide (Bailey et al., 2006).  

The blood of several varieties of modern inarticulate brachiopods contains a non-heme 

respiratory pigment called hemerythrin, which enables the storing and transporting of 

oxygen (Manwell, 1960; Bailey et al., 2006).  This ability allows lingulid brachiopods to 

survive in oxygen-deficient and euxinic conditions.  This survival adaptation has been 

observed in modern brachiopods that are able to survive for several days in a hypoxic 

setting (Brunton, 1982; Bailey et al., 2006).   

Lingulid brachiopods originated in the Early Cambrian and are extant.  They are 

burrowing organisms that attach to the sediment via a long pedicle (Zhang et al., 2004).   

During geologic intervals of ecological and environmental calm, lingulid brachiopods are 



www.manaraa.com

61 

 

generally restricted to stressed settings such as marginal marine environments and low 

oxygen conditions (Schubert & Bottjer, 1995).  They have retained these defining 

characteristics with only minor morphological changes since the Early Cambrian, as 

evidenced by their quality soft-bodied preservation in the Chengjiang Lagerstätte in 

Southwest China (Zhang et al., 2004).  This morphological consistency is important as 

they are found on microbial mats in both the Early Cambrian and Early Triassic.  Their 

specialized adaptation to hydrogen sulfide and low oxygen perhaps allowed them to 

proliferate along with MISS during times of stress and use the mats as an ecological 

niche. 

The pectinacean bivalve Claraia also proliferated during the deleterious conditions 

of the Early Triassic (Wignall, 1992; Schubert & Bottjer, 1995).  Unlike lingulid 

brachiopods, this genus of bivalve only existed from the Late Permian to the Middle 

Triassic.  While Claraia is now extinct, they are similar to marine flat clams that are 

morphologically comparable and are typically associated with oxygen-deficient settings 

(Hallam & Wignall, 1992; Schubert & Bottjer, 1995).  In this study, Claraia were found 

consistently associated with MISS, indicating that these bivalves were able to survive the 

dysoxic to anoxic conditions the microbial mats created. 

The relatively small size and simplicity of the trace fossils found are indicative of the 

recovery and continued environmental stresses in the Early Triassic (Pruss et al., 2004).  

Horizontal and relatively shallow burrows, like ones created by Planolites and 

Thalassinoides, require low-oxygen conditions, as would be present with microbial mats 

on the surface (Twitchett and Wignall, 1996; Pruss et al., 2004).  The smaller size of the 
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trace-making organisms, due to the Lilliput Effect following the PTME, explain the 

relatively small size of these traces compared to post recovery (Twitchett, 2007; Algeo 

et al., 2011). 

 

MISS as an Ecological Niche 

 To confirm the212 hypothesis that MISS provided an ecological niche for certain 

metazoans during the Early Triassic, two working hypotheses were developed.  These 

are that MISS proliferated in the subtidal realm during the Early Triassic, and that 

shelled invertebrates are found in close association with these MISS.   

The initial step to supporting these hypotheses was the confirmation of 

definitive MISS.  All of the samples from Hidden Pasture, Montpelier Canyon, and Bear 

Lake fall under the category of microbially induced phenomena in Pettijohn and Potter’s 

(1964) classification of primary sedimentary structures, which was updated with a new 

subsection by Noffke in 2001.  These determinations were made based on a 

combination of physical and microscopic characteristics consistent with MISS. 

The proliferation of MISS during the Early Triassic can be concluded based on 

two lines of evidence.  First, three of the four localities in this study show the presence 

of MISS.  The actual presence of MISS is likely greatly underrepresented due to a small 

taphonomic preservation window these fossils have.  Additionally, MISS are found 

consistently in subtidal settings at all three localities, indicating their substantial 

presence in environmental settings that they only inhabit during periods of ecological 
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stress. Therefore, the interpretation of this cross section of the western United States 

seems to confirm the proliferation of MISS in subtidal settings during the Early Triassic. 

This study also looked at the geochemical implications for Early Triassic MISS.  

Recent geochemical evidence suggests localized anoxia and euxinia in an expanded 

OMZ, with suboxic conditions on Panthalassan bottom waters (Algeo et al., 2008, 2010, 

2011).  Episodic upwelling of the OMZ would have then brought anoxic, H2S, and carbon 

dioxide rich waters onto the shallow continental shelf and platforms. However, the 

geochemical data collected for the seven samples examined shows that the bottom 

waters of sediments containing MISS were oxic to suboxic (at most).  This would indicate 

that anoxic bottom waters are not needed for the proliferation of MISS.  However, the 

proliferation of microbial mats would have created anoxic and euxinic porewaters, 

potentially affecting bottom waters at times and making vertical bioturbation 

physiologically difficult (McIlroy and Logan, 1999).  

Certain disaster taxa, such as lingulid brachiopods and the bivalve Claraia, were 

able to overcome the physical obstacles the microbial mats created and utilize them as 

an ecological niche.  These organisms, along with the trace fossils Planolites and 

Thalassinoides, were found consistently associated with MISS in the Lower Triassic 

strata studied.  Morphological evidence has shown that lingulid brachiopods are well 

adapted to hydrogen sulfide rich environments, while modern analogues of the bivalve 

Claraia show they were well adapted to low oxygen environments (Brunton, 1982; 

Schubert & Bottjer, 1995; Bailey et al., 2006).  Additionally, the trace fossils Planolites 

and Thalassinoides are relatively small and simple traces that are indicative of 
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environmental stresses and require low-oxygen conditions to create (Twitchett & 

Wignall, 1996; Pruss et al., 2004).   

 

Chapter 11: Conclusion 

The evidence for MISS proliferation in the subtidal realm during the 

Griesbachian, combined with the presence of disaster taxa in close association with 

these MISS, indicates that MISS likely provided an ecologic niche for certain metazoans 

during the recovery of the PTME.  MISS are found consistently in subtidal settings at all 

three localities, indicating their substantial presence in subtidal settings even with a 

strong taphonomic preservational bias.  The geochemical data collected suggests that 

the bottom waters of sediments containing MISS were oxic to suboxic, which is contrary 

to the general assumption that MISS require anoxic bottom waters to form.   

Although the bottom waters were oxic, the microbial mats would have created 

anoxic and euxinic porewaters, potentially reaching the surface and making vertical 

bioturbation physiologically difficult.  Specific disaster taxa, such as lingulid brachiopods 

and the bivalve Claraia, were able to overcome the physical obstacles the microbial 

mats created and were found consistently throughout the three localities associated 

with MISS.  The frequency of only a select group of metazoans found in association with 

bedding planes containing MISS leads to the conclusion that only organisms with 

specialized adaptations could survive the harsh environments created by the microbial 

mats.  These mats then created an ecological niche for these organisms as they provided 

a food source in a low competition environment. 
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